
GUJARAT TECHNOLOGICAL UNIVERSITY

COMPUTER ENGINEERING/INFORMATION TECHNOLOGY

ANDROID PROGRAMMING
SUBJECT CODE:2180715

B.E. 8th SEMESTER

Type of course: Bachelor of Engineering

Prerequisite: Java programming and Object-oriented programming, Knowledge of RDBMS and

OLTP

Rationale:

Teaching and Examination Scheme:

Teaching Scheme Credits Examination Marks Total

Marks L T P C Theory Marks Practical Marks

ESE

(E)

PA (M) PA (V) PA

(I) PA ALA ESE OEP

3 0 2 5 70 20 10 20 10 20 150

Content:

Sr. No. Content Total

Hrs

% Weightage

1 The Basics:

● Hello World: Intro to Android, Why develop apps

for Android?, Flavors of Android operating

systems, Challenges of developing for Android

(multiple OS, need backwards compatibility, need

to consider performance and offline capability)

● Concept: Create Your First Android App: Overview

of the development process - Java, Android Studio ,

Project layout in Android Studio, Target and minimum

SDKs, Android Virtual Device (AVD) Monitor,

Viewing logs in logcat and AVD, Android manifest file

, App Architecture: An app consists of one or more

activities. For an activity, write Java code and layout

xml, and hook them together, and register the activity in

the manifest file.

● Concept: Layouts, Views and Resources: Layout

elements can be viewed and edited in Layout Editor and

XML, Introduction to the range of UI elements,

Resources (layouts, strings, styles, themes), Identifying

10

resources with IDs, Programmatically referencing

resources using resource IDs, on Click attribute, Getting

user input from a view, Programmatically changing UI

elements, Layout Managers, Defining layouts for

activities, inflating the layout.

● Concept: Scrolling Views: How to make activities

scrollable: compare ScrollView, ListView,

RecyclerView , Getting the resource ID for a UI

element by inflating a layout (needed for

RecyclerView) , How to implement RecyclerView

(requires layout managers and ViewHolders) ,

Performance impications of different kinds of scrolling

UI elements

● Concept: Resources to Help You Learn:
Resources to help you learn: Samples that ship with

the SDK, Templates for projects,

developer.android.com, Android developer blog ,

Android developer YouTube channel, Source code

and samples in github, Stack overflow, Google

search!

● Activities and Intents :About activities, Defining

Activities , Activity Lifecycle , Activity navigation ,

About intents ,Explicit vs Implicit intents ,Passing

info to new activity ,Returning data from activity

● The Activity Lifecycle and Managing State:
Activity lifecycle , Activity lifecycle callback

methods , Activity instance state

● Starting Activities with Implicit Intents: Starting

activities by sending implicit intents, Intent filters

and enabling your activities to receive intents,

ShareCompat

● Testing and Debugging, and Backwards

Compatibility: Debugging your apps, Testing your

app, Support libraries

2 User Interface:

● User Input Controls: Getting user input , Changing

keyboards , Buttons , Dialogs and pickers , Spinners,

checkboxes, and radio buttons , Gestures , Speech

recognition (not done), Sensors (not done)

● Menus: Options menu, contextual menus (floating and

action bar), and popup menu, Adding menu items.

Handling on Clicks from menus.

● Screen Navigation: Terminology, Different ways a user

can navigate through an app, Action bar, Settings menu,

Navigation drawer, Directed workflow (funnels), Best

practices for navigation

● Themes and Styles: Best practices for themes and styles,

Performance benefits for themes, When and how to use

10

drawables, best practices for drawable, When and how to

use nine-patches, best practices for nine-patches, Tools for

creating drawables

● Material Design: What is material design? Material design

best practices. Material Design guidelines, Implementing

Material Design look and feel, with compatibility with

previous versions, Support library for Material Design

design, Transitions and Animations

● Adapt layouts for multiple devices and orientations:

Why we need to consider different screen sizes and

orientations , Screen density (dip or dp), How to create

adaptive layouts using resources folders , Different ways to

create images that scale nicely, Images and image formats

and how they affect performance (download speeds).

● Accessibility: Why accessibility matters, Accessibility

considerations: Color blindness, poor vision, poor hearing,

physical limitations, Accessibility guidelines , Testing for

accessibility , Screen readers, Making your app more

accessible: Color and Contrast, button size --> Material

Design guidelines, considerate layouts and navigation

● Localization: How to prep your app for localization, LTR

and RTL (eg Arabic) text.

● Testing the User Interface: Automated testing of UIs,

User testing your UI with real users, Using the Espresso

and UI Automator frameworks for testing UIs

3 Background Tasks:

● Connect to the Internet: Background Tasks,

Synchronous versus async tasks, What is the UI thread and

when should you use it? , Example of a background task --

retrieving data over the internet, Creating background tasks.

(schedule, send data, etc.) , Implementing AsyncTask

(doInBackground(), callbacks) , Limitations of AsyncTask ,

Passing info to background tasks, Initiating background

tasks, Scheduling background tasks (intro only, more later).

● Connecting to the Internet: Permissions, Building URIs,

Opening and closing Internet connections, Parsing JSON in

Android. (Because it’s common.) , Sending requests and

parsing response.

● AsyncTaskLoade: Intro to AsyncTaskLoader ,

loadInBackground() , AsyncTaskLoader callbacks ,

Benefits of loaders

● Broadcast Receivers: What is a Broadcast Receiver and a

Broadcast Intent? , Broadcast Receiver Security and

Lifecycle

● Services: What is a service? Long running task without a

UI, Difference between Activity and Service , Start and

10

stop services, Lifecycle methods, Foreground services,

IntentService class, App priority (critical, high, low), How

to create a new Service.

● Notifications: What is a Notification? , Notification Design

Guidelines.

● Triggering, Scheduling, and Optimizing Background Tasks:
AlarmManager

● Transferring Data Efficiently: Less data, less often!

Cell radio life cycle, Job Scheduler. Why to use Job

Scheduler instead of SyncManager/SyncAdapter,

Difference between alarms and job schedulers.

4 ● Data -- Saving, Retrieving, Loading
● Storing Data in your app: Internal versus external storage,

Privacy, sharing, security, encryption of your data , Shared

Preferences: Store private primitive data in key-value pairs

, SQLite Databases: Store structured data in a private

database , Store data on the web with your own network

server, Firebase for storing and sharing data in the cloud,

Concept: Preferences , What are Settings and Preferences? ,

Settings best practices (harder to take away settings than to

add, for usability reasons, Storing and retrieving

preferences as key/value pairs using SharedPreference,

Different Settings types, Settings menu, Using Activity and

PreferenceFragments to allow users to set preferences

● Store data using SQLite database: Overview of SQLite,

OpenHelper Android class , Querying (dev) Searching

(user) databases , Best practices for using databases in

Android , Best practices for testing your database

● Using Content Resolvers to access data: Content

Providers and Content Resolvers work together, what is a

content provider? , What is a content resolver? , How do

they work together? , How to implement and use Content

Resolvers

● Content Providers: When to implement content providers

, How to implement content providers (overview), Content

URIs , UriMatcher, Content Provider authorities , Required

methods on ContentProvider (query, insert, delete, update) ,

MIME types , Contracts , Making content provider data

accessible to other apps by modifying manifest, and

protecting data with permissions.

● Using Loaders to Load and Display Data: Using loaders to

asynchronously load data into an activity or fragment,

Benefits of Loaders -- why use them? , Loader states

(started, stopped, reset) , LoaderManager , Methods &

callbacks to implement in Loaders: loadInBackground(),

deliverResult() onStart/StopLoading(),

10

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks

R Level U Level A Level N Level E Level

Legends: R : Remembrance ; U = Understanding; A = Application; N = Analyze; E = Evaluation

and above Levels (Revised Bloom’s Taxonomy)

Reference Books:

Course Outcome:

This course teaches final-year Computer Science students how to develop Android apps. To be able to

understand the process of developing software for the mobile. To be able to create mobile applications

on the Android Platform. To be able to create mobile applications involving data storage in SQLite

database

List of Experiments:

1. Install Android Studio, Hello World, Logging

 Install Android Studio.
 Create a virtual device.
 Create and Run Hello World on emulator and device.
 Explore project layout.
 Generate and view log statements.
 Explore manifest file.

2. Practical: Make Your First Interactive UI

 Add Views and UI elements in Layout Editor to the app's home screen.
 Edit layout XML.
 Add click behavior to a button (show a toast).

onReset/Cancelled()),Registering listeners , Using

CursorLoader with ContentProviders

5 Polish and Publish

● Permissions: The permissions model

● Libraries: Using libraries

● Widgets: What are widgets? When to use them and how to

implement them.

● Publishing your App: Different ways to monetize your

app (overview only)

● Making and publishing APKs: Guidelines for publishing

in Google Play , Make and sign the APK, Beta test your

app , Publish your app to Google Play

5

 Change the UI through a button click.
 Write a method to use string resource to define a message to appear in the UI.
 Experiment with using different layouts.
 Explore other UI Elements in the Layout Manager.

3. Practical: Working with TextView Elements

 Use a scroll view for text with minor HTML formatting

4. Practical: Learning Resources

 Get answers from android.developer.com.
 Create new projects with different templates.
 Create a new project based on a sample in the SDK.
 Find out how to add a launcher icon for your app.
 Find out the most popular Android OS in India.

5. Practical: Create and Start Activities

 Create a new activity and layout

 Start the new activity from an existing activity with an explicit intent
 Pass user-entered information from one activity to the other
 Pass information back to the main activity

6. Practical: Lifecycle and State Callbacks

 Add Lifecycle callbacks
 Save and restore instance state

7. Practical: Start Activities with Implicit Intents

 Send an implicit intent to start an activity (open web site)
 Send an implicit intent to start an activity (open location)
 Use an intent filter to allow other apps to start an activity in your app
 Use ShareCompat.IntentBuilder

8. Practical: Using the Debugger

9. Practical: Testing your code

10. Practical: Use support library

11. Practical: Use Keyboards, Input Controls, Alerts, and Pickers

 Experiment in your app with different keyboards for user input, spelling suggestions,

and auto-capitalization.

 Add a spinner input control for selecting one value out of a set of values.

Lecture hours:

 Create new app to show an alert, and record the user's selection (OK or Cancel).

MOVE TO CONCEPT.

 Update app to show date and time pickers and record the user's selections.

12. Practical: Use an Options Menu and Radio Buttons

 Set up an options menu and overflow menu
 Add items to the option (overflow) menu.

 Add radio buttons for user selection.
 Add Up navigation to the app bar.

 13. Practical: Create a Recycler View

 Create an activity that displays data in a RecyclerView.
 Make the items in the list clickable
 Add a floating action button to add items to the list

 14. Practical: Theme, Custom Styles, Drawables

 Define and use a theme

 Define and use a custom style that uses a drawable

15. Practical: Add a FAB and Cards

 Create an app that uses a Floating Action Button (FAB)
 Add an activity that uses cards. Optionally, style the cards.
 Customize your app's theme and styles to use Material Design styles and colors.

16. Practical: Put yourself in the Users shoes

 Test your app for accessibility, using Talkback and Explore by Touch. Switch to

monochrome color space

 Put in earplugs, can you still use your app?
 Wear the darkest glasses you can find, can you still use your gloves?
 Put on gloves, can you still use your app?

 How would you make one of the apps you have written so far more accessible?

17. Practical: Implement Localized Strings

 Create localized strings in your app
 Test by changing default language

18. Practical: Use Espresso to test your UI

 Use Espresso to Test Your UI

19. Practical: Create an AsyncTask

 Create a simple AsyncTask to do work in the background

20. Practical: Google APIs Explorer, JSON, Books API

 Use the Books API in the Google APIs Explorer to investigate request format

and JSON response format

 Create a new app that uses the Books API and AsyncTask to search for the author of a

book..
 Write the code to parse the response and extract and display the relevant information
 Debug errors when the Internet permission is missing
 Add the missing permission to the Android Manifest.
 Verify your fix by running and testing your app.

21. Practical: Use AsyncTaskLoader

 Use AsyncTaskLoader instead of AsyncTask to show book search results in a

RecyclerView

22. Practical: BroadcastReceiver

 Create an app with a BroadcastReceiver

23. Practical: Notifications

 Trigger a Notification
 Add Actions to your Notification

24. Practical: Alarm Manager

 Implement an alarm manager

25. Practical: Job Scheduler

 Use JobScheduler to do background updates

26. Practical: Firebase Job Dispatcher

27. Practical: Get and Save User Preferences

 Implement Settings menu to allow users to enter preferences.
 Implement code to retrieve and user user preferences

28. Practical: Save user data in a database

 Create an app that allows users to enter notes

 Save the notes in a SQLite database

 Create an app that stores data in an SQL database.

 Display the data in a RecyclerView.

 Allow users to add, delete, and edit data items.

29. Practical: Querying and Searching a Database

30. Practical: Implement a Content Provider

 Add a content provider for your SQLite database

31. Practical: Use a ContentResolver to query your data

 Use a content resolver to query the database
 Display the results of the query
 Use the content resolver to add data to the database

32. Practical: Implement a Loader

 Implement a loader
 Register a Listener for the Loader
 Test the loader by checking that the Items in the UI update when the data generated

by the loader changes

 Use an AsyncTaskLoader to update a scrolling list of notes titles as the user adds more

notes
 Register a Listener for the Loader
 Test the loader by checking that the Items in the UI update when the underlying data

changes

33. Practical: Beta testing your app

 Running a beta test on Google Play

